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Week 13 and 14:

Waves
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Longitudinal wave in a spring

H 19

Longitudinal wave in a gas
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transverse wave in a spring
transverse wave in a rope

H 19
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Longitudinal wave (animation)

http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Transverse wave (animation)
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Note: In a wave there is a transport of energy          

(without “net” mass transport)

The fact that the mass m moves 

upwards (and therefore acquires 

potential energy) is the “proof” that the 

wave carries energy.
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One-dimensional differential wave equation

𝜕2𝜓

𝜕𝑡2
 =  𝑣2

𝜕2𝜓

𝜕𝑥2

Definition: a disturbance ψ (x,t) propagates as a wave 

without deformation and with a determined 𝑣 speed if it 

satisfies:

Equation of d’Alembert 

one-dimensional or differential equation 

of the one-dimensional wave motion

The general solution of the d’Alembert equation is:  

𝜓(𝑥, 𝑡)  =  𝑓(𝑥 − 𝑣𝑡)  + 𝑓(𝑥 + 𝑣𝑡) 

H 20, AF 311

back wavetraveling wave

t>0

t=0 t=0

t>0

The d’Alembert wave equation is an example of a linear differential equation, 

which means that if ψ1 (x, t) and ψ2 (x, t) are solutions to the wave equation, 

then ψ1 (x, t) ±ψ2 (x, t) is also a solution. 

The implication is that waves solution of the d’Alembert equation (and so also 

electromagnetic waves, as we will see) obey the superposition principle.
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General solution:   ( , )     ( ) )- (   f x v f x vtt tx += +

Let′s put: 𝑢 = 𝑥 ± 𝑣𝑡
⇒
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𝑇𝑎𝑘𝑖𝑛𝑔  𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛«
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⇒

 
𝜕2𝜓

𝜕𝑡2
= 𝑣2

𝜕2𝜓

𝜕𝑥2

Démonstration:

Differential equation of

wave motion

one-dimensional:

𝜕2𝜓

𝜕𝑡2
 =  𝑣2

𝜕2𝜓

𝜕𝑥2
 or 

𝜕2𝜓

𝜕𝑥2
=

1

𝑣2

𝜕2𝜓

𝜕𝑡2
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Propagation of the disturbance without deformation
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2 2 2 2
2 2 2
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   
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H 32

The three-dimensional wave differential equation

Equation of d’Alembert 

three-dimensional or 

differential equation of 

the wave motion 

three-dimensional

2 2
2

2 2
      v

t x

  
=

 

Equation of d’Alembert 

one-dimensional or 

differential equation of 

the wave motion 

one-dimensional

1D

3D
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Sinusoidal plane wave with propagation along x

𝜆 Wavelength[m]

𝑘 =
2𝜋

𝜆
 Wave number [m−1]

𝑣 =
Δ𝑥

Δ𝑡
 =

𝜆

𝑃
 =  𝜆𝑓 =

𝜔

𝑘
 phase velocity[m/s]

𝑓 =
𝑣 

𝜆
=

𝜔

2𝜋
 Frequency [Hz]

𝑃 =
1

𝑓
 Period [s]

Sine wave (equivalent shapes):
𝜓(𝑥, 𝑡)  =  𝐴 sin[ 𝑘(𝑥 ± 𝑣𝑡)]  =

 = 𝐴 sin( 𝑘𝑥 ±
2𝜋

𝜆
𝑣𝑡)  =

 = 𝐴 sin(
2𝜋

𝜆
(𝑥 ± 𝑣𝑡))  =

 =𝐴 sin( 2𝜋(
𝑥

𝜆
±

𝑡

𝑃
))  =

 = 𝐴 sin( 𝑘𝑥 ± 𝜔𝑡)

x

t

P

P

 A

 A

x

(more common form)

H 22
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Plane waves with arbitrary propagation direction

H 32

Plane sine wave propagating along the axis መ𝐤:  𝜓( 𝐫, 𝑡) = 𝐴 sin( 𝐤 ⋅ 𝐫 ± 𝜔𝑡)

wave−vector 𝐤:  𝐤 = 𝑘መ𝐤 𝑘 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2

= 2𝜋

𝜆
=

𝜔

𝑣
 

⇒
𝜓( 𝐫, 𝑡) = 𝐴 sin( 𝐤 ⋅ 𝐫 ± 𝜔𝑡) = 𝐴 sin( 𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 ± 𝜔𝑡) 

(complex form: 𝜓( 𝐫, 𝑡) = 𝐴𝑒𝑖(𝐤⋅𝐫±𝜔𝑡))

Plane waves are a special case of 
waves where a physical quantity, 
such as phase, is constant over a 
plane that is perpendicular to the 
direction of wave travel.
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Electromagnetic Waves
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This is a generalization of Faraday’s law. 

The electric field will exist regardless of whether there are any conductors around.

• A Change of Magnetic Flux Produces an Electric Field

Kirchhoff's rule: 
Faraday’s law

Relation between Electric and Magnetic fields

The emf for any closed path can be expressed 

as the line integral of 𝑬 ⋅ 𝒅𝒍 over that path

The induced electric field 𝑬 is a nonconservative field that is generated by a changing magnetic field. The 

field 𝑬 that satisfies the generalization of Faraday’s law cannot possibly be an electrostatic field because were 

the field electrostatic and hence conservative, the line integral over a closed loop would be zero.

The induction of a current in the loop implies the presence of an induced 

electric field 𝑬 , which must be tangent to the loop because that is the direction 

in which the charges in the wire move in response to the electric force. 

Reminder
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Displacement Current and the General Form 

of Ampère’s Law

Can a changing in Electric Fields produce a Magnetic Fields ?

That a magnetic field is produced by an electric current was discovered by

Oersted, and the mathematic relation is given by Ampère’s law

Is it possible that magnetic fields could be produced in another way as well? 

If a changing magnetic field produces an electric field, then perhaps the reverse might be true as well: 

that a changing electric field  will produce a magnetic field. 

If this were true, it would signify a beautiful symmetry in nature.

In this equation, the line integral is over any closed path through which conduction current passes, where 

conduction current is defined by the expression I=dq/dt.

We now show that Ampère’s law in this form is valid only if any electric fields present are constant in time.

James Clerk Maxwell recognized  this limitation and modified Ampère’s law to include time-varying electric fields
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To back up this idea that a changing electric field might produce a 

magnetic field, we use the following argument: 

• According to Ampère’s law, we divide any chosen closed path into 

short segments and take the dot product of each dl with the 

magnetic field at that segment B, and sum (integrate) all these 

products over the chosen closed path. 

• That sum will equal the total current I that passes through a 

surface bounded by the path of the line integral (𝐼𝑒𝑛𝑐𝑙). 

• When we applied Ampère’s law to the field around a straight wire, 

we imagined the current as passing through the circular area 

enclosed by our circular loop, and that area is the flat Surface 1 

shown in Figure. 

• However, we could just as well use the sack-shaped Surface 2 in 

Figure as the surface for Ampère’s law, since the same current I 

passes through it.

Displacement Current and the General Form 

of Ampère’s Law
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Now consider the closed circular path for the situation of 

Figure, where a capacitor is being discharged. 

Ampère’s law works for Surface 1 (current I passes

through Surface 1), but it does not work for Surface 2, 

since no current passes through Surface 2. 

There is a magnetic field around the wire, so the left side 

of Ampère’s law is not zero; yet no current flows through 

surface 2, so the right side of Ampère’s law is zero. 

We seem to have a contradiction of Ampère’s law !

There is a magnetic field present in Figure, however, only if 

charge is flowing to or away from the capacitor plates. 

The changing charge on the plates means that the electric field 

between the plates is changing in time. 

Maxwell resolved the problem of no current through Surface 2 

in Figure by proposing that there needs to be an extra term on 

the right in Ampère’s law involving the changing electric field. 

Displacement Current and the General Form 

of Ampère’s Law
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Let us see what this term should be by determining it for the changing 

electric field between the capacitor plates in Figure. 

The charge Q on a capacitor of capacitance C is where V is the 

potential difference between the plates. Also recall that V=Ed, where 

d is the (small) separation of the plates and E is the (uniform) electric 

field strength between them, if we ignore any fringing of the field.

Also, for a parallel-plate capacitor, 𝑪 = 𝝐𝟎𝑨/𝒅
where A is the area of each plate. 

We combine these to obtain

If the charge on each plate changes at a rate Τ𝑑𝑄 𝑑𝑡, the electric field changes at a 

proportional rate. That is, by differentiating this expression for Q, we have:

Now is also the current I flowing into or out of the capacitor:

Where 𝜱𝑬 = 𝑬𝑨 is the electric flux through the closed path (Surface 2)

Displacement Current and the General Form 

of Ampère’s Law
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In order to make Ampère’s law working for surface S2 in Figure, as 

well as for surface S1 (where current I flows), we therefore write

This equation represents the general form of Ampère’s law, and embodies 

Maxwell’s idea that a magnetic field can be caused not only by an ordinary 

electric current, but also by a changing electric field or changing electric flux.

Although we arrived at it for a special case, this relation has proved valid in 

general. The last term on the right of this equation is usually very small, and not 

easy to measure experimentally

As the capacitor is being charged (or discharged), the changing electric 

field between the plates may be considered equivalent to a current that 

acts as a continuation of the conduction current in the wire.

𝐼𝑑 = displacement current

𝑨𝒎𝒑𝒆𝒓𝒆′𝒔 𝒍𝒂𝒘
(general form)

Displacement Current and the General Form 

of Ampère’s Law
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ර 𝑩 ⋅ 𝑑ℓ

Displacement Current and the General Form 

of Ampère’s Law



8.2013.20
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Thus the B field outside the capacitor is the same as that outside the 

wire. In other words, the magnetic field produced by the changing 

electric field between the plates is the same as that produced by the 

current in the wire
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The magnetic field lines generated by a current and of a bar magnet do not begin or end at 

any point. For any closed surface, the number of lines entering the surface equals the 

number leaving the surface; therefore, the net magnetic flux is zero. In contrast, for a 

closed surface surrounding one charge of an electric, the net electric flux is not zero.

Gauss’s Law in Magnetism (closed surface) Reminder
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We now present four equations that are regarded as the basis of all electrical and magnetic phenomena. 

These equations, developed by Maxwell, are as fundamental to electromagnetic phenomena as Newton’s 

laws are to mechanical phenomena. 

The theory that Maxwell developed turned out to also be in agreement with the special theory of 

relativity, as Einstein showed in 1905. 

Maxwell’s equations represent the laws of electricity and magnetism that we have already discussed, but 

they have additional important consequences. For simplicity, we present Maxwell’s equations as applied 

to free space, that is, in the absence of any dielectric or magnetic material. The four equations are:

Maxwell’s Equations  (integral form)

Notice the symmetry of Maxwell’s 

equations. Equations (1) and (2) 

are symmetric, apart from the 

absence of the term for magnetic 

monopoles in Equation (2). 

Furthermore, Equations (3) and (4) 

are symmetric in that the line 

integrals of E and B around a 

closed path are related to the rate 

of change of magnetic flux and 

electric flux, respectively.

(1)

(2)

(3)

(4)
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• Hertz performed experiments that verified Maxwell’s prediction. The 

experimental apparatus Hertz used to generate and detect electromagnetic 

waves is shown schematically in Figure. 

• An induction coil is connected to a transmitter made up of two spherical 

electrodes separated by a narrow gap. The coil provides short voltage surges to 

the electrodes, making one positive and the other negative. A spark is generated 

between the spheres when the electric field near either electrode surpasses the 

dielectric strength for air (3 × 106 V/m). 

• From an electric-circuit viewpoint, this experimental apparatus is equivalent to 

an LC circuit in which the inductance is that of the coil and the capacitance is 

due to the spherical electrodes.

Hertz’s Discoveries
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Because L and C are small in Hertz’s apparatus, the frequency of oscillation is high, on the 

order of 100 MHz. Electromagnetic waves are radiated at this frequency as a result of the 

oscillation of free charges in the transmitter circuit. 

Hertz was able to detect these waves using a single loop of wire with its own spark gap (the 

receiver). Such a receiver loop, placed several meters from the transmitter, has its own 

effective inductance, capacitance, and natural frequency of oscillation. 

In Hertz’s experiment, sparks were induced across the gap of the receiving electrodes when 

the receiver’s frequency was adjusted to match that of the transmitter. 

Hertz’s Discoveries
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A magnetic field will be produced in empty space if there is a changing electric field. 

A changing magnetic field produces an electric field that is itself changing. 

This changing electric field will, in turn, produce a magnetic field, which will be 

changing, and so it too will produce a changing electric field; and so on. 

Maxwell found that the net result of these interacting changing fields was a wave of 

electric and magnetic fields that can propagate (travel) through space! 

• Consider two conducting rods that will serve as an “antenna”. Suppose these two rods 

are connected by a switch to the opposite terminals of a battery. When the switch is 

closed, the upper rod quickly becomes positively charged and the lower one negatively 

charged. 

• Electric field lines are formed as indicated in Figure. While the charges are flowing, a 

current exists whose direction is indicated by the black arrows. A magnetic field is 

therefore produced near the antenna. The magnetic field lines encircle the rod-like 

antenna and therefore points into the page on the right and out of the page on the left. 

• In the static case, the fields extend outward indefinitely far. 

However, when the switch is closed, the fields quickly appear nearby, but it takes time for 

them to reach distant points. Both electric and magnetic fields store energy, and this energy 

cannot be transferred to distant points at infinite speed.

Production of Electromagnetic Waves
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Now we look at a different situation, where our 

antenna is connected to an ac generator. 

In Fig. a, the connection has just been realized. 

Charge starts building up and fields form. 

The + and - signs in Fig. a indicate the net charge on 

each rod at a given instant. 

The black arrows indicate the direction of the current 

I. The electric field is represented by the red lines in 

the plane of the page; and the magnetic field, 

according to the right-hand rule, is into or out of the 

page, in blue



8.2813.28

In Fig. b, the voltage of the ac generator has reversed in direction; the current is reversed, and the new 

magnetic field is in the opposite direction. Because the new fields have changed direction, the old lines 

fold back to connect up to some of the new lines and form closed loops, as shown. 

The old fields, however, don’t suddenly disappear; they are on their way to distant points. 

Indeed, because a changing magnetic field produces an electric field, and a changing electric field 

produces a magnetic field, this combination of changing electric and magnetic fields moving 

outward is self-supporting, no longer depending on the antenna charges.

(b)

SELF 

SUPPORTING 

WAVES
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The fields not far from the antenna, referred to as the near field, become quite complicated. 

We are instead mainly interested in the fields far from the antenna, which we refer to as the radiation field, 

or far field. The electric field lines form loops, as shown in Fig., and continue moving outward. 

The magnetic field lines also form closed loops but are not shown since they are perpendicular to the page. 

Several things about the radiation field can be noted 

from this Fig.. 

(1) the electric and magnetic fields at any point are 

perpendicular to each other, and to the direction of 

wave travel.

(2) we can see that the fields alternate in direction (B is 

into the page at some points and out of the page at 

others; E points up at some points and down at 

others). Thus, the field strengths vary from a 

maximum in one direction, to zero, to a maximum in 

the other direction. 

(3) the electric and magnetic fields are “in phase”: that 

is, they each are zero at the same points and reach 

their maxima at the same points in space. 

(4) very far from the antenna the field lines are quite flat 

over a reasonably large area, and the waves are 

referred to as plane waves.
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Plane and spherical waves

Spherical

(near source)

Plane

(far from source)
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Static Electric Dipole

(generates a static electric field)

Oscillating Electric Dipole

(generates an oscillating electric field

and

an oscillating magnetic field)
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Field created by an oscillating electric dipole

https://upload.wikimedia.org/wikipedia/commons/a/a6/Dipole_xmting_antenna_animation_4_408x318x150ms.gif

(animation)
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If the source voltage varies sinusoidally, then the electric and magnetic field strengths in the 

radiation field will also vary sinusoidally. The sinusoidal character of the waves is diagrammed 

in Fig., which shows the field directions and magnitudes plotted as a function of position. 

Notice that B and E are perpendicular to each other and to the direction of travel (=the direction 

of the wave velocity v). The direction of v can be found from a right-hand rule using ExB.

• We call these waves electromagnetic (EM) waves. They are transverse waves because the amplitude is 

perpendicular to the direction of wave travel. 

• EM waves are always waves of fields, not of matter (like waves on water or a rope). 

• Because they are fields, EM waves can propagate in empty space. 

• EM waves are produced by electric charges that are oscillating and hence are undergoing acceleration. 

Accelerating electric charges give rise to electromagnetic waves.

Production of Electromagnetic Waves
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Let us now examine how the existence of EM waves follows from Maxwell’s equations. 

We begin by considering a region of free space, where there are no charges or conduction currents—that 

is, far from the source so that the wave fronts are essentially flat over a reasonable area. 

We call them plane waves, as we saw, because at any instant B and E are uniform over a reasonably large 

plane perpendicular to the direction of propagation. 

We choose a coordinate system, so that the wave is traveling in the x direction with velocity v with E parallel 

to the y axis and B parallel to the z axis.

Maxwell’s equations in vacuum, with Q=I=0 (no sources), 

become:

Electromagnetic Waves in vacuum, and Their Speed, Derived 

from Maxwell’s Equations
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Maxwell’s equations, with Q=I=0 :

Notice the beautiful symmetry of these equations. The term on 

the right in the last equation, conceived by Maxwell, is essential 

for this symmetry. It is also essential if electromagnetic waves 

are to be produced, as we will now see. 

If the wave is sinusoidal with wavelength 𝜆 and frequency 𝑓, 

then such a traveling wave can be written as

speed of the wave

Such waves, in which the electric and magnetic fields are restricted to being 

parallel to a pair of perpendicular axes, are said to be linearly polarized 

waves.

Electromagnetic Waves, and Their Speed, Derived from 

Maxwell’s Equations
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Electromagnetic Waves, and Their Speed, Derived from 

Maxwell’s Equations

Let’s consider those circuits and let’s apply 

Faraday’s law and Ampere/Maxwell’s law.
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Faraday’s law applied to the rectangle in Figure

Consider a rectangle of width dx and height 𝑙, lying in the xy plane as shown in Figure. 

Let’s first evaluate the line integral of 𝑬 ∙ 𝑑𝒔 around this rectangle in the counterclockwise 

direction at an instant of time when the wave is passing through the rectangle. 

The contributions from the top and bottom of the rectangle are zero 

because 𝑬 is perpendicular to 𝑑𝒔 for these paths. 

We can express the electric field on the right side of the rectangle as

assuming dx is very small compared with the wavelength of the wave

Electromagnetic Waves, and Their Speed, Derived from 

Maxwell’s Equations

ර 𝑬 ⋅ 𝑑𝒔 = −
𝑑Φ𝐵

𝑑𝑡
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Noting that the magnitude of the magnetic field changes from B(x) to 

B(x+dx) over the width dx and that the direction for taking the line integral 

is counterclockwise when viewed from above in Figure

Ampère’s law
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These equations both have the form of the linear wave 

equation with the wave speed v replaced by c, where:

Because this speed is precisely the same as the 

speed of light in empty space, we are led to 

believe (correctly) that 

light is an electromagnetic wave !!!

Consider and

Equation of 

d’Alembert 

𝜕

𝜕𝑥

2 2
2

2 2
      v

t x

  
=

 

In a similar way, one 

can show that it is

possible to obtain:

Slide 13.39Slide 13.38

Remember:

(slide 13.6)
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The simplest solution of those wave equations is a sinusoidal wave for which 

the field magnitudes E and B vary with x and t according to the expressions:

where 𝐸𝑚𝑎𝑥and 𝐵𝑚𝑎𝑥 are the maximum values of the fields.

The angular wave number is 𝑘 =
2𝜋

𝜆
, where 𝜆 is the wavelength. 

The angular frequency is 𝜔 = 2𝜋𝑓, where 𝑓 is the wave 

frequency. According to the traveling wave model, the ratio 

𝜔/𝑘 equals the speed of an electromagnetic wave, 𝑐

where we have used 𝑣 = 𝑐 = 𝜆𝑓, which relates the speed, frequency, 

and wavelength of a sinusoidal wave. 

Therefore, for electromagnetic waves, the 

wavelength and frequency of these waves are related by

Pictorial representation, at one instant, of a 

sinusoidal, linearly polarized electromagnetic 

wave moving in the positive x direction.

(1)

(2)
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Taking partial derivatives of Equation (1) (with respect to x) and (2) (with respect to t) gives

That is, at every instant, the ratio of 

the magnitude of the electric field to the 

magnitude of the magnetic field in an 

electromagnetic wave equals the speed 

of light.

(1)

(2) place in

This is a remarkable result. For this is precisely equal to the measured speed of light!

Slide 13.38
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Light as an Electromagnetic Wave 

and the Electromagnetic Spectrum

• enormous range of wave lengths and frequencies
• spans more than 15 orders of magnitude

𝑐 = 𝜆𝑓



Applications of electromagnetic waves
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Energy in EM Waves

u

(total energy density associated to an EM wave)



8.4613.46

The rate of transfer of energy by an electromagnetic wave is described by a vector S, 

called the Poynting vector, which is defined by the expression

The magnitude of the Poynting vector represents the rate at which energy passes 

through a unit surface area perpendicular to the direction of wave propagation

in the unit time. 

Therefore, the magnitude of S represents power per unit area. 

The direction of the vector is along the direction of wave propagation.

The Poynting Vector

Instantaneous rate at which the energy is passing through a unit area

= 𝑐𝑢
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We are often interested, for a sinusoidal plane electromagnetic wave, to the 

time average of S over one or more cycles, which is called the wave intensity I.

The Poynting Vector

(see slide 13.45)

𝑆avg is also somethimes

indicated as ҧ𝑆
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If electromagnetic waves carry energy, then we might expect them to also carry linear momentum. 

When an electromagnetic wave encounters the surface of an object, a force will be exerted on the surface as 

a result of the momentum transfer just as when a moving object strikes a surface. 

The force per unit area exerted by the waves is called radiation pressure. 

If a beam of EM radiation (light, for example) is completely absorbed by an object, then the momentum 

transferred is

Δ𝑈is the energy absorbed by the object in a time Δ𝑡

If instead, the radiation is fully reflected (suppose the object is a 

mirror), then the momentum transferred is twice as great, just as 

when a ball bounces elastically off a surface

Momentum and Radiation Pressure

If Δ𝑈 is the energy absorbed by the object in a time Δ𝑡, there will be a net momentum Δ𝑝 transferred to the object
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Momentum and Radiation Pressure

Here, 𝑆avg is also somethimes indicated as ҧ𝑆

where p is the momentum

(see slide 13.46) 

𝑑𝑝 = 𝑑𝑈/𝑐, see slide 13.48)
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Radiation pressure: intuitive explanation for a metal

   q q= + F E v B

Electric and magnetic fields of an 

electromagnetic wave can combine 

to produce a force in the direction 

of propagation, as illustrated for 

the special case of electrons whose 

motion is highly damped by the 

resistance of a metal.

By applying the right-hand rule, and accounting for the negative charge of the 

electron, we can see that the force on the electron from the magnetic field is in 

the direction of the positive x-axis, which is the direction of wave propagation.
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Summary: Electromagnetic plane waves in vacuum

𝐄(𝐱, 𝑡) = 𝐄0 cos 𝐤 ⋅ 𝐱 − 𝜔𝑡 + 𝜑0  𝐁(𝐱, 𝑡) = 𝐁0 cos 𝐤 ⋅ 𝐱 − 𝜔𝑡 + 𝜑0  
 
wave vector: 𝐤 pulsation: 𝜔 = 𝑐 𝐤 = 𝑐𝑘

wavelength: 𝜆 =
2𝜋

𝐤
direction of propagation: መ𝐤 =

𝐤

𝐤

Link between 𝐄0 et 𝐁0 ∶
 

𝐁0 =
𝑘

𝜔
መ𝐤 × 𝐄0 =

1

𝑐
መ𝐤 × 𝐄0  ⇒ 

𝐄0 and 𝐁0 are:
−perpendicular to the direction of propagation" ("transverse wave") (i.e., 𝐁 ⊥ 𝐤, 𝐄 ⊥ 𝐤)

−perpendicular to each other (i.e., 𝐁 ⊥ 𝐄)

− 𝐁0 = (1/𝑐) 𝐄0  

G395, Z540
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Summary: Momentum of an EM wave in a vacuum

There is a momentum associated with the EM field

𝐩 =  𝜀0𝐄 × 𝐁 =
𝐒

𝑐2
Density of momentum transported by the wave

[(mass x speed)/volume]

𝑢𝐸𝑀 =
𝜀0|𝐄|2

2
+

|𝐁|2

2𝜇0
 ⇒ for monochromatic plane wave: 𝑢𝐸𝑀 =

1

2
𝜀0𝐸0

2 = 𝑐 𝐩

𝐒 =
1

𝜇0
𝐄 × 𝐁  ⇒ for monochromatic plane wave: 𝐒 =

1

2
𝑐𝜀0𝐸0

2 = 𝑐 𝑢𝐸𝑀 = 𝐼𝑎𝑣𝑔

𝐩 =  𝜀0 (𝐄 × 𝐁)  =
𝐒

𝑐2  ⇒ for monochromatic plane wave: 𝐩 =
1

2𝑐
𝜀0𝐸0

2 =
1

𝑐2 𝐒 =
𝐼𝑎𝑣𝑔

𝑐2

 with 𝑐 =
1

𝜇0𝜀0
≅ 3 × 108 m/s

𝐒 =
W

m2
 𝐩 =

W

m2

s2

m2
= kg

 m

s

1 

m3
=

mass×v𝑒𝑙𝑜𝑐𝑖𝑡𝑦

volume

Density of momentum: 

Energy density: 

Power through 

a unit area: 

Instantaneous Averages
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Notes: 
1) The radiation pressure of sunlight on a mirror on Earth is of the order of
10−11 bar (𝑃 ≅ 6 × 10−6 Pa) (i.e., 10−11lower than atmospheric pressure).
The total force of sunlight on the entire Earth is 𝐹𝑡𝑜𝑡 = 𝜋𝑅2𝑃 ≅ 7 × 108 N ≅ 70′000 tons

2) The forces generated by radiation pressure are usually small.
However, they play a crucial role in certain contexts, such as astrodynamics.
For example:
− if the effects of solar radiation pressure on the spacecraft of the 
Viking program had been ignored, the spacecraft would have missed 
the orbit of Mars by about 15,000 km.
−The Japan Aerospace Exploration Agency" ("JAXA") has successfully 
deployed a ′solar sail′ in space which has already successfully propelled its 
payload with the IKAROS project.
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Some solved problems
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