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Week 13 and 14:
Waves
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Longitudinal wave in a spring
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: : transverse wave in a rope
transverse wave in a spring P
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Longitudinal wave (animation)
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Note: In a wave there Is a transport of energy
(without “net” mass transport)

—e

(a)

(b)

The fact that the mass m moves
upwards (and therefore acquires
potential energy) is the “proof” that the
wave carries energy.
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One-dimensional differential wave equation

Definition: a disturbance y (X,t) propagates as a wave
without deformation and with a determined v speed if it

satisfies: 5 5
oW _ 0
dt? 0x?2

Equation of d’Alembert
one-dimensional or differential equation
of the one-dimensional wave motion

The general solution of the d’Alembert equation is:

Y(x,t) = f(x—vt) + f(x + vt)

The d’Alembert wave equation is an example of a linear differential equation,
which means that if w1 (X, t) and y2 (X, t) are solutions to the wave equation,
then w1 (X, t) £y2 (x, t) is also a solution. traveling wave back wave
The implication is that waves solution of the d’ Alembert equation (and so also

electromagnetic waves, as we will see) obey the superposition principle.

H 20, AF 311 13.6
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Differential equation of a 21/) a 2 l/) 6 21/) 1 0 21/)
wave motion —_— = UZ —_— Or —m— =
one-dimensional: Ot? 0 x 2 0 x 2 v2 Jt?

w(X,1)="1 (x-vt)+ f (x+vt)

General solution:

Démonstration:

Let'sput: u = x + vt

=
oY B alpau_ oY
dx  Ou dx Ou

oy _opou_
ot ou ot ' ou

Taking the second derivatives we obtain«

Y 9 <a¢ 6u> ) <a¢> ou 9%y 92y  d <a¢ a_u> ) <a¢> ou

0x2  ox\ou ox/) ou\ox/ox ou? 0tz ot\ou 9t) oul\ot) ot
=

0y _ 0%

ot? 0x?

2
= p2 —a Y
du?

CURIOSITY
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Propagation of the disturbance without deformation

Y =f(x.1)

(a) r(x, 0) = f(x)
3.0

2.5

2.0

(b)

<3 B 3)
b ER

r;Otiist¥ist;3s
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The three-dimensional wave differential equation

Equation of d’ Alembert
1D 5217” ) GZW one-dimensional or
ot2 =V » differential equation of
t 6)( the wave motion

one-dimensional

Equation of d’Alembert

0?2 02 oL 02 three-dimensional or
3D 1’2” —\/2 ( l/: I’Z l//) VZVZW differential equation of
ot OX 8y the wave motion

three-dimensional

H 32 13.9
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Sinusoidal plane wave with propagation along x

PILIN — v Sine wave (equivalent shapes):
Y(x,t) = Asin[k(x £ vt)] =

X 2T
= Asin(kx + TUt) =
VA
=A sm(T (x +vt)) =
£=0 ¢ - x t
=A sin( Zn(z + F)) =
A = Asin(kx + wt)  (more common form)

\/ \/ A Wavelength[m]

i k = 2771 Wave number [m™1]
(a)
— P — v = ox =£ = Af = d phase velocity[m/s]
- At P k

H 22

Period [s]

v
\/ \/ f= ? T 2n Frequency [z
f
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Plane waves with arbitrary propagation direction

AL Dig
Plac
eclion oyt 1 he
Plane sine wave propagating along the axis k: Y(r,t) =Asin(k-r + wt)
- =2n
— . = = 2 2 2 = — .

wave—vector k: k= kk k \/k" thythi—; v Plane waves are a special case of

waves where a physical quantity,
=

Y(r,t) = Asin(K-r+ wt) = Asin(kyx + kyy + k,z + wt) such as ph‘ﬂf'se' IS Cons.tant over a
(complex form: (1, t) = Aelkrot) plane that is perpendicular to the

direction of wave travel.

H 32 13.11
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Electromagnetic Waves
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=k = : . - Reminder
Relation between Electric and Magnetic fields
A Change of Magnetic Flux Produces an Electric Field
The induction of a current in the loop implies the presence of an induced 108 chiariges in tinse, an electne
electric field E , which must be tangent to the loop because that is the direction bickd s mdyccd sl g direction
. . . . . . tangent to the circumference of
in which the charges in the wire move in response to the electric force. e loog:
. Faraday’s law L
Kirchhoff's rule: D <, E4
The emf for any closed path can be expressed —_ B /
as the line integral of E - dl over that path dt I 5 l
— — — — d@ B “
gzgj)E.dg PE-di=- 4
dt i s

This is a generalization of Faraday’s law.

The electric field will exist regardless of whether there are any conductors around.

The induced electric field E is a nonconservative field that is generated by a changing magnetic field. The

field E that satisfies the generalization of Faraday’s law cannot possibly be an electrostatic field because were
the field electrostatic and hence conservative, the line integral over a closed loop would be zero.

13.13
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Displacement Current and the General Form
of Ampere’s Law

Can a changing in Electric Fields produce a Magnetic Fields ?

That a magnetic field is produced by an electric current was discovered by
Oersted, and the mathematic relation is given by Ampere’s law

ﬂgﬁdﬁ — M{)Iencl

In this equation, the line integral 1s over any closed path through which conduction current passes, where
conduction current 1s defined by the expression /=dg/dt.

Is it possible that magnetic fields could be produced in another way as well?

If a changing magnetic field produces an electric field, then perhaps the reverse might be true as well:
that a changing electric field will produce a magnetic field.

If this were true, it would signify a beautiful symmetry in nature.

We now show that Ampere’s law 1n this form is valid only if any electric fields present are constant in time.

James Clerk Maxwell recognized this limitation and modified Ampére’s law to include time-varying electric fields

13.14
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Displacement Current and the General Form
of Ampere’s Law

To back up this 1dea that a changing electric field might produce a #;B -dl = Mo J
magnetic field, we use the following argument:

* According to Ampere’s law, we divide any chosen closed path into

short segments and take the dot product of each dI with the Closed
magnetic field at that segment B, and sum (integrate) all these Surface 2 path
products over the chosen closed path. \
* That sum will equal the total current / that passes through a Surface 1
surface bounded by the path of the line integral (Ip,c;). I I
- @4
 When we applied Ampere’s law to the field around a straight wire,
we imagined the current as passing through the circular area
enclosed by our circular loop, and that area is the flat Surface 1
shown 1n Figure. <,
FIGURE 2 Ampere’s law
* However, we could just as well use the sack-shaped Surface 2 in applied to two different surfaces
Figure as the surface for Ampere’s law, since the same current / bounded by the same closed path.

passes through it.

13.15
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Displacement Current and the General Form

of Ampere’s Law

Now consider the closed circular path for the situation of
Figure, where a capacitor is being discharged.

Ampere’s law works for Surface 1 (current / passes
through Surface 1), but it does not work for Surface 2,
since no current passes through Surface 2.

There is a magnetic field around the wire, so the left side
of Ampere’s law is not zero; yet no current flows through
surface 2, so the right side of Ampere’s law is zero.

We seem to have a contradiction of Ampére’s law !

There 1s a magnetic field present in Figure, however, only if
charge 1s flowing to or away from the capacitor plates.

The changing charge on the plates means that the electric field
between the plates is changing in time.

Maxwell resolved the problem of no current through Surface 2
in Figure by proposing that there needs to be an extra term on

the right in Ampere s law involving the changing electric field.

j[;ﬁ di — Mﬂlencl

FIGURE 3 A capacitor
discharging. A conduction current
passes through surface 1, but no
conduction current passes through
surface 2. An extra term is needed in
Ampere’s law.
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Displacement Current and the General Form
of Ampere’s Law

Let us see what this term should be by determining it for the changing

electric field between the capacitor plates in Figure. ___F: 58 S&%ed
=Ei

The charge O on a capacitor of capacitance C is where V is the I ol '?."jfc* - I

potential difference between the plates. Also recall that V=FEd, where :EEE 8

d 1s the (small) separation of the plates and E is the (uniform) electric _Z—'-*—’li/I}* \ Surface 1

field strength between them, if we ignore any fringing of the field. 1 Suthiee 3

Also, for a parallel-plate capacitor, € = €gA/d
where A4 1s the area of each plate.

Q = CV = (Egl;l)(Ed) = ¢, AE

If the charge on each plate changes at a rate dQ /dt, the electric field changes at a
proportional rate. That is, by differentiating this expression for O, we have:

We combine these to obtain

. . . dQ dE
Now is also the current / flowing into or out of the capacitor: d— = €, A d—
[ [
; dQ dE dd .
dt V7 dt O dt
Where @ = EA is the electric flux through the closed path ( )

13.17
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Displacement Current and the General Form
of Ampere’s Law

In order to make Ampere’s law working for surface S2 in Figure, as

well as for surface S1 (where current / flows), we therefore write
I; = displacement current

oL ddP Ampere's law
' / CﬁB dl = polena T o€ At (general form)

This equation represents the general form of Ampere’s law, and embodies
Maxwell’s idea that a magnetic field can be caused not only by an ordinary
electric current, but also by a changing electric field or changing electric flux.

Although we arrived at it for a special case, this relation has proved valid in
general. The last term on the right of this equation is usually very small, and not

_ , easy to measure experimentally
The conduction current / in the

wire passes only through S;, which

leads to a contradiction in . . . . . .
Ariipare s Liw that is resolved only As the capacitor is being charged (or discharged), the changing electric

if one postulates a displacement field between the plates may be considered equivalent to a current that
current through S,. acts as a continuation of the conduction current in the wire.

13.18
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The electric field lines between
the plates create an electric flux
through surface S.

Figure 34.2 When a conduction
current exists in the wires, a chang-
ing electric field E exists between
the plates of the capacitor.

Displacement Current and the General Form

of Ampere’s Law

dd
(I+ Id) = pol + ﬁnEnTIE

—S—
wl
Q..

We can understand the meaning of this expre*-mon by referring to Figure 34.2. The
electric flux through surface S is @, f E-dA = EA, where A is the area of
the capacitor plates and E is the magmtude of the uniform electric field between
the plates. If ¢ is the charge on the plates at any instant, then E = ¢/(€;A)
Therefore, the electric flux through S is
(I)E = FEA = i
€o
Hence, the displacement current through S is
dP, dq
d— €07 7T
dt dt

That is, the displacement current [, through S is precisely equal to the conduction
current /in the wires connected to the capacitor!

GURIOSITY

13.19



=PrL - BTN cCharging capacitor. A 30-pF air-gap capacitor has circular plates
of area A = 100 cm®. It is charged by a 70-V battery through a 2.0-() resistor. At

the instant the battery is connected, the electric field between the plates is changing
most rapidly. At this instant, calculate (a) the current into the plates, and (b) the
rate of change of electric field between the plates. (c) Determine the magnetic field
induced between the plates. Assume E is uniform between the plates at any instant A (face of
and is zero at all points beyond the edges of the plates. capacitor

APPROACH In RC circuits, the charge on a capacitor being charged, as a func-
tion of time, is

Q = CVO(l - e_URC),
where Vis the voltage of the battery. To find the current at ¢ = 0, we differentiate
this and substitute the values Vy = 70V, C = 30 pF, R = 2.0 Q.
SOLUTION (a) We take the derivative of Q and evaluate it at t = 0:

e I\ SN
ar | _, RC —0 R 200
This is the rate at which charge accumulates on the capacitor and equals the E (out of paper)

current flowing in the circuit at ¢ = 0.
FIGURE 4 Frontal view of a

(b) The electric field between two closely spaced conductors is given by circular plate of a parallel-plate

E = g _ o/ A. capacitor. E between plates points
€0 €n out toward viewer; lines of B are
Hence circles. (Example 1.)
dE  dQ/dt 35A

_ = 4.0 X 10*V/m-s.
dt €gA (885 X 1072 C?/N-m?)(1.0 X 1072 m?) /

13.20
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(c) Although we will not prove it, we might expect the lines of B, because of
symmetry, to be circles, and to be perpendicular to E, as shown in Fig. 4;
this is the same symmetry we saw for the inverse situation of a changing
magnetic field producing an electric field. To determine the magnitude of B
between the plates we apply Ampere’s law, Eq. 1, with the current 7., = 0:
o dd
%B-df = Moo E.

We choose our path to be a circle of radius r, centered at the center of the plate,
and thus following a magnetic field line such as the one shown in Fig. 4. For
r = ry (the radius of plate) the flux through a circle of radius r is E (wrz) since E
is assumed uniform between the plates at any moment. So from Ampere’s law
we have

d
B(2wr) = poeo— (wr’E)
dt
- e BE.
Ho€o dt
Hence
MLo€y dE
B = 02 0 FI' [i" = FO]

Thus the B field outside the capacitor is the same as that outside the
wire. In other words, the magnetic field produced by the changing
electric field between the plates is the same as that produced by the
current in the wire

r>ry E=d/e=0/eA), dE/dt=1/(eA)
B L po€ors dE _ po€ory 1 _ ol
2r dt 2r  egmr} 2y

We assume E = 0 for r > ry, so for points beyond the edge of the plates all the
flux is contained within the plates (area = Wrg) and @, = Enr;. Thus
Ampere’s law gives

d
B(2@r) = pge€, E (7r3E)

2 dE
= €ENTTHy ——
Mo €p Odt
or
2
Mo€pFp dE
B = a [r=r]

B has its maximum value at r = ry, which, from either relation above (using
ro = VA/m = 5.6cm),is

HocoTo dE
2 dt

= 1 (47 X 107 T-m/A)(8.85 X 1072 C¥/N-m?)(5.6 X 10 m)(4.0 X 10" V/m s)

— 12X 10T

This is a very small field and lasts only briefly (the time constant RC = 6.0 X 107"'s)
and so would be very difficult to measure.

Bmax =

13.21



=PrL

Gauss’s Law in Magnetism (closed surface) Reminder

The magnetic field lines generated by a current and of a bar magnet do not begin or end at
any point. For any closed surface, the number of lines entering the surface equals the
number leaving the surface; therefore, the net magnetic flux is zero. In contrast, for a
closed surface surrounding one charge of an electric, the net electric flux is not zero.

Gauss’s law in magnetism states that

the net magnetic flux through any closed surface is always zero:

%ﬁ-dﬁzf}

The electric flux
through a closed
surface surmunding

The net magnetic flux
B one of the charges

% thrnugh a closed surface
q S

) 15 not zero.
surrounding one of the

poles or any other

/ * \ closed surface is zero.
/

Flg ure 30.22 The magnetic field lines of a bar mag- FigI.II'E 30.23 The electric field lines surrounding
net form closed loops. (The dashed line represents an electric dipole begin on the positive charge and
the intersection of a closed surface with the page.) terminate on the negative charge.

13.22
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Maxwell’s Equations (integral form)

We now present four equations that are regarded as the basis of all electrical and magnetic phenomena.
These equations, developed by Maxwell, are as fundamental to electromagnetic phenomena as Newton’s
laws are to mechanical phenomena.

The theory that Maxwell developed turned out to also be in agreement with the special theory of
relativity, as Einstein showed in 1905.

Maxwell’s equations represent the laws of electricity and magnetism that we have already discussed, but
they have additional important consequences. For simplicity, we present Maxwell’s equations as applied
to free space, that is, in the absence of any dielectric or magnetic material. The four equations are:

(1) % F.qa = L < Gauss's law Notice the symmetry of Maxwell’s
€9 equations. Equations (1) and (2)
are symmetric, apart from the
) jg =R e « Gauss's law in magnetism absence of t.he term for magnetic
monopoles in Equation (2).
Furthermore, Equations (3) and (4)
. dd, are symmetric in that the line
) jg E-ds = - At <« Faraday’s law integrals of E and B around a
closed path are related to the rate
L D, of change of magnetic flux and
(4) jg B-ds = u,l+ €y T 4 Ampére-Maxwell law electric flux, respectively.

13.23
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The transmitter consists of two
spherical electrodes connected to
an induction coil, which provides
short voltage surges to the
spheres, setting up oscillations in
the discharge between the
electrodes.

Inducton
coil

Transmitter

Receiver

The receiver is a nearby loop
of wire containing a second

spark gap.

Hertz’s Discoveries

Hertz performed experiments that verified Maxwell’s prediction. The
experimental apparatus Hertz used to generate and detect electromagnetic
waves 1s shown schematically in Figure.

An induction coil is connected to a transmitter made up of two spherical
electrodes separated by a narrow gap. The coil provides short voltage surges to
the electrodes, making one positive and the other negative. A spark is generated
between the spheres when the electric field near either electrode surpasses the
dielectric strength for air (3 X 10° V/m).

From an electric-circuit viewpoint, this experimental apparatus is equivalent to
an LC circuit in which the inductance is that of the coil and the capacitance 1s
due to the spherical electrodes.

13.24
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The transmitter consists of two
spherical electrodes connected to
an induction coil, which provides
short voltage surges to the
spheres, setting up oscillations in
the discharge between the
electrodes.

Inducton
coil

Transmitter

Receiver

The receiver is a nearby loop
of wire containing a second

spark gap.

Hertz’s Discoveries

T
| A
| Spark Induced A
| gap o~ 70 sparks e o
|
. Tuner
¢ Ik y
Loop 1 Loop 2
Transformer
Resonatles at Transmitter Receiver
fi= ——
2 2TJLC

The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves.

Because L and C are small in Hertz’s apparatus, the frequency of oscillation is high, on the
order of 100 MHz. Electromagnetic waves are radiated at this frequency as a result of the
oscillation of free charges in the transmitter circuit.

Hertz was able to detect these waves using a single loop of wire with its own spark gap (the
receiver). Such a receiver loop, placed several meters from the transmitter, has its own
effective inductance, capacitance, and natural frequency of oscillation.

In Hertz’s experiment, sparks were induced across the gap of the receiving electrodes when
the receiver’s frequency was adjusted to match that of the transmitter.

13.25
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Production of Electromagnetic Waves

S J A magnetic field will be produced in empty space if there is a changing electric field.
. _L/ A changing magnetic field produces an electric field that is itself changing.
_ This changing electric field will, in turn, produce a magnetic field, which will be
T—‘ changing, and so it too will produce a changing electric field; and so on.
(a)

Maxwell found that the net result of these interacting changing fields was a wave of
electric and magnetic fields that can propagate (travel) through space!

. * Consider two conducting rods that will serve as an “antenna”. Suppose these two rods
O1 T are connected by a switch to the opposite terminals of a battery. When the switch i1s
+ closed, the upper rod quickly becomes positively charged and the lower one negatively
B charged.
® 1t
Bisout © * Electric field lines are formed as indicated in Figure. While the charges are flowing, a

current exists whose direction is indicated by the black arrows. A magnetic field is
therefore produced near the antenna. The magnetic field lines encircle the rod-like

FIGURE 6 Fields produced by antenna and therefore points into the page on the right and out of the page on the left.
charge flowing into conductors. It

takes time for the E and B fields to . . .
travel outward to distant points. The ~ * In the static case, the fields extend outward indefinitely far.
fields are shown to the right of the However, when the switch is closed, the fields quickly appear nearby, but it takes time for

gf‘te“% T e R them to reach distant points. Both electric and magnetic fields store energy, and this energy
irections, symmetrically about the

(vertical) antenna. cannot be transferred to distant points at infinite speed.

(b)

13.26
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Y
)

;1 Now we look at a different situation, where our
antenna is connected to an ac generator.

In Fig. a, the connection has just been realized.
Charge starts building up and fields form.

The + and - signs in Fig. a indicate the net charge on
cach rod at a given instant.

The black arrows indicate the direction of the current
IR 1. The electric field is represented by the red lines in
the plane of the page; and the magnetic field,

according to the right-hand rule, is into or out of the
FIGURE 7 Sequence showing page, in blue
electric and magnetic fields that
spread outward from oscillating
charges on two conductors (the
antenna) connected to an ac source
(see the text).

13.27
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FIGURE 7 Sequence showing
electric and magnetic fields that
spread outward from oscillating
charges on two conductors (the
antenna) connected to an ac source
(see the text).

In Fig. b, the voltage of the ac generator has reversed in direction; the current is reversed, and the new
magnetic field is in the opposite direction. Because the new fields have changed direction, the old lines
fold back to connect up to some of the new lines and form closed loops, as shown.

The old fields, however, don’t suddenly disappear; they are on their way to distant points.

Indeed, because a changing magnetic field produces an electric field, and a changing electric field
produces a magnetic field, this combination of changing electric and magnetic fields moving
outward is self-supporting, no longer depending on the antenna charges.

_
(b)
. . 1© )
Direction 1
4 ) —sOf ) ®
Antenna wave travel - )
&) |'i;f 4
(a) ~

FIGURE 8 (a) The radiation fields (far from the antenna)
produced by a sinusoidal signal on the antenna. The red closed

SELF loops represent electric field lines. The magnetic field lines,
perpendicular to the page and represented by blue (x) and ©,
SUPPORTING also form closed loops. (b) Very far from the antenna the
WAVES wave fronts (field lines) are essentially flat over a fairly

large area, and are referred to as plane waves.
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The fields not far from the antenna, referred to as the near field, become quite complicated.

We are instead mainly interested in the fields far from the antenna, which we refer to as the radiation field,
or far field. The electric field lines form loops, as shown in Fig., and continue moving outward.

The magnetic field lines also form closed loops but are not shown since they are perpendicular to the page.

/

Direction
? — {}f
wave travel

~~

(b)

Several things about the radiation field can be noted

from this Fig..

(1) the electric and magnetic fields at any point are
perpendicular to each other, and to the direction of
wave travel.

(2) we can see that the fields alternate in direction (B is
into the page at some points and out of the page at
others; E points up at some points and down at
others). Thus, the field strengths vary from a
maximum in one direction, to zero, to a maximum in
the other direction.

(3) the electric and magnetic fields are “in phase”: that
is, they each are zero at the same points and reach
their maxima at the same points in space.

(4) very far from the antenna the field lines are quite flat
over a reasonably large area, and the waves are
referred to as plane waves.
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Plane and spherical waves

Spherical and plane wave fronts

Spherical wave fronts

E Source@

Plane wave fronts

CURIOSITY

Onde plane

4 I
/' —

- p—

— :’_—--‘ .

Plans d’onde

Diaphragme

Onde sphérique

Rays
1 - -
————— » \ —|»
P ) > j b= b
L _J*" ------ = Soooo *
Spherical Plane

(near source)

(far from source)
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Static Electric Dipole Oscillating Electric Dipole

(generates a static electric field) (generates an oscillating electric field
and
an oscillating magnetic field)

12.31
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Production of Electromagnetic Waves

If the source voltage varies sinusoidally, then the electric and magnetic field strengths in the
radiation field will also vary sinusoidally. The sinusoidal character of the waves 1s diagrammed
in Fig., which shows the field directions and magnitudes plotted as a function of position.
Notice that B and E are perpendicular to each other and to the direction of travel (=the direction
of the wave velocity v). The direction of v can be found from a right-hand rule using ExB.

E

Direction
of motion
of wave

—

E

We call these waves electromagnetic (EM) waves. They are transverse waves because the amplitude is
perpendicular to the direction of wave travel.

EM waves are always waves of fields, not of matter (like waves on water or a rope).

Because they are fields, EM waves can propagate in empty space.

EM waves are produced by electric charges that are oscillating and hence are undergoing acceleration.
Accelerating electric charges give rise to electromagnetic waves.

13.34
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Electromagnetic Waves in vacuum, and Their Speed, Derived

from Maxwell’s Equations
Let us now examine how the existence of EM waves follows from Maxwell’s equations.

We begin by considering a region of free space, where there are no charges or conduction currents—that
is, far from the source so that the wave fronts are essentially flat over a reasonable area.

We call them plane waves, as we saw, because at any instant B and E are uniform over a reasonably large
plane perpendicular to the direction of propagation.

We choose a coordinate system, so that the wave is traveling in the x direction with velocity v with E parallel
to the y axis and B parallel to the z axis.

Maxwell’s equations in vacuum, with Q=I=0 (no sources),

y become:
f]'gﬁ-di =
. %ﬁ-di = 0
E
E-dl = —
B
z X L dd g
B-dl = —.
3E Mo € df
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Electromagnetic Waves, and Their Speed, Derived from
Maxwell’s Equations

Notice the beautiful symmetry of these equations. The term on
Maxwell’s equations, with OQ=I=0 : the right in the last equation, conceived by Maxwell, is essential
for this symmetry. It is also essential if electromagnetic waves

S, are to be produced, as we will now see.
E-dA = 0
If the wave is sinusoidal with wavelength A and frequency f,
L then such a traveling wave can be written as
ﬂgB'dA =0 E = E, = E,sin(kx — ot)
F dd, B = B; = Bysin(kx — wt)
OE-dl = — speed of the wave
J df 217 ()]
k = ; w = 27f, and fA = — = v
F. dd A k
¢B-dl = i
] Mo €0 At

Such waves, in which the electric and magnetic fields are restricted to being

parallel to a pair of perpendicular axes, are said to be linearly polarized
waves.

13.36



=PrL

Electromagnetic Waves, and Their Speed, Derived from

Maxwell’s Equations

FIGURE 10 Applying Faraday’s
law to the rectangle (Ay)(dx).

FIGURE 11 Applying Maxwell’s
fourth equation to the rectangle
(Az)(dx).

According to Equation Ei}il 1, According to Equat;i}nn 34.14, this
this spatial variation in E gives spatial variation in B gives rise to
rise to a time-varying magnetic a time-varying electric field along
field along the z direction. the y direction.

¥ Y

-—‘m} E

e
| I L
I —

E(x+ dx)

E(x} I r‘;‘i::r;ﬁ £
z -"f,.__—-_-—-_—-———— X

Figure 34.7 Atan instant when
Figure 34.6 Ataninstant when a a plane wave passes through a rect-
plane wave moving in the positive x angular path of width dx lying in
direction passes through a rectan- the xz plane, the magnetic field in
gular path of width dxlying in the xy the z direction varies from B (x) to
plane, the electric field in the y direc- ]_i":[x + dx).

tion varies from E (x) to E(x + dx).

Let’s consider those circuits and let’s apply
Faraday’s law and Ampere/Maxwell’s law.
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Maxwell’s Equations

4)) = B dx assuming dx is very small compared with the wavelength of the wave

dd
ds = ——2=

5= -

b

Faraday’s law applied to the rectangle in Figure

Consider a rectangle of width dx and height [, lying in the xy plane as shown in Figure.

Let’s first evaluate the line integral of E - ds around this rectangle in the counterclockwise

direction at an instant of time when the wave 1s passing through the rectangle.

The contributions from the top and bottom of the rectangle are zero
because E is perpendicular to ds for these paths.
We can express the electric field on the right side of the rectangle as

dE‘ n
E(x + dx) = E(x) + dx = E(x) + —dx ==
dx f constant a X
GE\ |
— %E-d?=[£(x+ dx)]f—[E(x)]ftf( )dx f(@)dxz —
dx dx
dd dB 0B
= ldx— =€ dx— E:—('J]—B
dt dt x constant at ('Jx at

Electromagnetic Waves, and Their Speed, Derived from

According to Equation 34.11,
this spatial variation in E gives
rise to a time-varying magnetic
field along the z direction.

_‘I

—

edx

.

==18

E(:
Z'“'HH-____-____-_‘_‘_'—"——-———X

Figure 34.6 At an instant when a

plane wave moving in the positive x

direction passes through a rectan-

gular path of width dx lying in the xy
plane, the electric field in the y direc-
. . ) o — -

tion varies from E (x) to E(x + dx).
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Noting that the magnitude of the magnetic field changes from B(x) to
B(x+dx) over the width dx and that the direction for taking the line integral
is counterclockwise when viewed from above in Figure

0B

B-ds =[B(x)]¢ — [B(x+ dx) ]t =~ —¢ ) dx
X
oD
(I)EZ FEfdx. i 2 fdx@
ot ot
0B ol
_‘8 a_x dx — M{) E()‘g dx a_t
oB oL
6_96 — _MUEUG_I

Ampére’s law

dd,

= —
B-ds = ysd + eop,o?

According to Equat_i’nn 34.14, this
spatial variation in B gives rise to

a time-varying electric field along
the y direction.

=l

Figure 34.7 Atan instant when
a plane wave passes through a rect-
angular path of width dx lying in
the xz plane, the magnetic field in

-t
the z direction varies from B (x) to
=

B(x + dx).

13.39



=PrL

Slide 13.38

oE _ B
dx dt

Consider and

—

9 0°E 0 /aza) 0 (aB)
— = — = — — — [ =) =
0x d x> dx \ 9t TANGE:

Oy _y? 0%y

oz ooxe

Equation of
d’Alembert

Remember:
(slide 13.6)

Because this speed is precisely the same as the
speed of light in empty space, we are led to
believe (correctly) that

light is an electromagnetic wave !!!

Slide 13.39
0B oL
= —rEn —
Ix Ho€o Py
_—
d OE I°E O°E
— o\ Moo, | 7 o — Mo€o -
ANETY 9x> 92
In a similar way, one 928 9%2B
can show that it is 5 — Mo€) 5
possible to obtain: x> ot’

These equations both have the form of the linear wave
equation with the wave speed v replaced by ¢, where:

1

V o€
1

V(47w X 1077 T-m/A)(8.854 19 X 10 '2C2/N - m?)
= 92.997 92 X 108 m/s

C:

C:
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The simplest solution of those wave equations is a sinusoidal wave for which
the field magnitudes E and B vary with x and ¢ according to the expressions:

) L=LE max COS (kx — wt) where E,,,,and B4, are the maximum values of the fields.
2 B=1B max COS (k'x o wt) The angular wave number 1s k = 2_n, where A 1s the wavelength.
g 1 g
The angular frequency i1s w = 2rf, where f is the wave
w _ QWf = Af=c¢ frequency. According to the traveling wave model, the ratio
k 27/ A i w /k equals the speed of an electromagnetic wave, ¢
where we have used v = ¢ = Af, which relates the speed, frequency, J| B
and wavelength of a sinusoidal wave.
Therefore, for electromagnetic waves, the
wavelength and frequency of these waves are related by e
B c
A__c_f%.OOXlOSm/s X
f f Pictorial representation, at one instant, of a

sinusoidal, linearly polarized electromagnetic
wave moving in the positive x direction.
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Taking partial derivatives of Equation (1) (with respect to x) and (2) (with respect to ¢) gives

— _ ok i
() E=E_. . cos (kx — wt) — = —kE,,. sin (kx — wt) Slide 13.38
X :
@ B= B, cos (kx — wl) placein  db OB
b - Jx i
— = wB,,,, sin (kx — ot)
dt
kEl’l’lEiX - meEIX : : 1
That 1s, at every instant, the ratio of
E E
— E max __ 7 __ c the magnitude of the electric field to the
max w = ¢ B B magnitude of the magnetic field in an
B k max electromagnetic wave equals the speed
fax of light.
1 1 o
c = = = 3.00 X 10°m/s.

Veoro /(885 x 1072C2/N-m?)(47 x 107 T-m/A)

This is a remarkable result. For this is precisely equal to the measured speed of light!
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c = — = —— = 300 % 10°m/s

and the Electromagnetic Spectrum B \Veo o

The wavelengths of visible light were measured in the first decade of the
nineteenth century, long before anyone imagined that light was an electromagnetic
wave. The wavelengths were found to lie between 4.0 X 107"m and 7.5 X 10" m,
or 400 nm to 750 nm (1 nm = 10’ m). The frequencies of visible light can be found

c=Af

where f and A are the frequency and wavelength, respectively, of the wave. Here,
c is the speed of light, 3.00 X 10* m/s; it gets the special symbol ¢ because of its

universality for all EM waves in free space.

Chart of the Electromagnetic Spectrum
Wavglengtt 5 | | ! e B vy v | | e ! A
Mm) 108 102 10 1 107 102 10° 10+ 105 106 107 10® 10° 1070 101 102
f 1 MHz 1 GHz 1 THz 1 PHZ 1 EHz 12ZHz
requency l ] l | | ] ] ] ] | ] l l

H2) 105 108 107 108 10° 1010 101 1012 1013 1014 1015 1016 1017 1018 101 1020 102!

Radio Spectrum - Terah’ Infrare

violet X-ray Gamma
Broadcast and Wireless Microwave Far IR Mid IR Extreme UV Soft X-ray Hard X-ray
ble wa

v
|\ v l\ V
0 10 <t <t

« enormous range of wave lengths and frequencies
« spans more than 15 orders of magnitude

optics
v

A
S21U0J129[9

[A = 3x108/freq = 1/(wn*100) = 1.24x10-6/eV|
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Applications of electromagnetic waves

1ft 1cm 1 mm i 1 1nm 1A
wavelength | | ! | ! | | et M | | | | l
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H2) 405 106 107 108 10° 10 10" 10'2 103 10' 10' 10% 10'7 10'® 10'® 1020 102

Radio Spectrum _ Terahe,- Infrarec raviolet X-ray Gamma

Bands

Broadcast and Wireless Microwave Far IR Mid IR Extreme UV Soft X-ray Hard X-ray
; ) e ) 2 8 . ble wave (nm)
1 )) = p— o s : Te) o (=] o
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Energy in EM Waves

Electromagnetic waves carry energy from one region of space to another. This
energy 1s associated with the moving electric and magnetic fields. The energy
density u; (J/m?) stored in an electric field E is lu; = €, E*| The energy density
stored in a magnetic field B is given by |up = 3 B>/u,| Thus, the total energy stored
per unit volume in a region of space where there is an electromagnetic wave is

1 1 B’
U = up + ug = EEG E? + E,u,_ (total energy density associated to an EM wave)
0
In this equation, E and B represent the electric and magnetic field strengths of the
wave at any instant in a small region of space. We can write U  in terms
of the E field alone, using (B=E/c) and (c = 1/Veom)
to obtain
1 1 eopo E?
u = —e,E* + — S0l _ e, E2
2 2 o

Note here that the energy density associated with the B field equals that due to the
E field, and each contributes half to the total energy. We can also write the energy
density in terms of the B field only:

u = €, E? = €,c’B* =

or in one term containing both E and B,

E? EcB ©E5 R
i = € = € C — = i .
' ' V €0 o o
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The Poynting Vector

The rate of transfer of energy by an electromagnetic wave is described by a vector S, —> 1
called the Poynting vector, which is defined by the expression S =—

The magnitude of the Poynting vector represents the rate at which energy passes
through a unit surface area perpendicular to the direction of wave propagation
in the unit time.

Therefore, the magnitude of S represents power per unit area. o
The direction of the vector 1s along the direction of wave propagation.

Let us imagine the wave is passing through an area A perpendicular to the x axis
as shown in Fig.  In a short time dt, the wave moves to the right a distance
dx = cdt where c is the wave speed. The energy that passes through A in the
time dt 1s the energy that occupies the volume dV = A dx = Acdt. The energy
density u is u = €, E*> where E is the electric field in this volume at the given
instant. So the total energy dU contained in this volume dV is the energy density u
times the volume: dU = u dV = (e;E*)(Acdt). Therefore the energy crossing

the area A per time df is
- E =¢B and ¢ = 1/\/eyuy

1 dU 2 2 F '
- T cB EB /A
S A dt EﬂcE i S = E,:],\\i‘f_?2 = — = T =cCcu E !./(
Mg 1270) e
dx =cdt

Instantaneous rate at which the energy is passing through a unit area
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The Poynting Vector

We are often interested, for a sinusoidal plane electromagnetic wave, to the
time average of S over one or more cycles, which 1s called the wave intensity 1.

The total instantaneous energy density « is equal to the sum of the energy den-
sities associated with the electric and magnetic fields:
B’ :
= u; + uy = E> = — (see slide 13.45)
Mo

When this total instantaneous energy density is averaged over one or more cycles
. . . 1
of an electromagnetic wave, we again obtain a factor of 5. Hence, for any electro-
magnetic wave, the total average energy per unit volume is
. L. L.

82

max

2

U, = EU(E2) = 160E2 =

avg avg ~ 2 max

Savg is also somethimes

I =8,,= cuy,
.g a‘.g . . —
indicated as S

In other words, the intensity of an electromagnetic wave equals the average energy
density multiplied by the speed of light.
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Momentum and Radiation Pressure

If AU is the energy absorbed by the object in a time At, there will be a net momentum Ap transferred to the object

"Very roughly, if we think of light as particles (and we do), the force that would be needed to bring such
a particle moving at speed c¢ to “rest” (i.e. absorption) is F = Ap/At. But F is also related to energy by

F=AU/Ax, so Ap=F Ar = AU/(Ax/At) = AU /c where we identify (Ax/At) with the speed
of light c.

If electromagnetic waves carry energy, then we might expect them to also carry linear momentum.

When an electromagnetic wave encounters the surface of an object, a force will be exerted on the surface as
a result of the momentum transfer just as when a moving object strikes a surface.

The force per unit area exerted by the waves is called radiation pressure.

If a beam of EM radiation (light, for example) is completely absorbed by an object, then the momentum
transferred is

AU radiation
AUis the energy absorbed by the object in a time At Ap = — fully
¢ absorbed

If instead, the radiation is fully reflected (suppose the object is a
mirror), then the momentum transferred is twice as great, just as Ap
when a ball bounces elastically off a surface

radiation
24U fully
reflected
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Momentum and Radiation Pressure

Here, S,y is also somethimes indicated as S

Using Newton’s second law we can calculate the force and the pressure
exerted by radiation on the object. The force F is given by

F = j—p : where p 1s the momentum
I

The average rate that energy is delivered to the object is related to the Poynting
vector by

d_U — 54 (see slide 13.46)
dt ’

where A is the cross-sectional area of the object which intercepts the radiation.
The radiation pressure P (assuming full absorption dp = dU/c, see slide 13.48)

pl- £ _1d _ 14U [S [fully ]
A Adt  Acdt | c absorbed
If the light 1s fully reflected, the pressure is twice as great
p_ 25 fully
c reflected
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Radiation pressure: intuitive explanation for a metal

F=qE+qvxB

Electric and magnetic fields of an
electromagnetic wave can combine
to produce a force in the direction
of propagation, as illustrated for
the special case of electrons whose
motion is highly damped by the
resistance of a metal.

”ﬁ
S

\
)
ll

o i
<i

By applying the right-hand rule, and accounting for the negative charge of the
electron, we can see that the force on the electron from the magnetic field is in

the direction of the positive x-axis, which is the direction of wave propagation.
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Summary: Electromagnetic plane waves in vacuum

E(x,t) = Ejcos(k-x— wt + @) B(x,t) = Bycos(k:x — wt + ¢;) }'E\
wave vector: k pulsation: w = c|K| = ck z/ 2 .

2T . k
wavelength: 1 = m direction of propagation: k = m

Link between E, et By :

k . 1,
E, and B, are:

—perpendicular to the direction of propagation” ("transverse wave") (i.e., B L K,E 1 K)
—perpendicular to each other (i.e,, B L E)

— |Bol = (1/¢)|E,|

G395, 72540 12.51
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Summary: Momentum of an EM wave in a vacuum

There is a momentum associated with the EM field

P = EXB=— Density of momentum transported by the wave
¢ [(mass x speed)/volume]

Instantaneous Averages
o g|El?  |B|? 1

Energy density: Uy = 0|2 | + |2y| = for monochromatic plane wave: (ugy) = EsoEg = c(|p|)
0

Power through _ : _ _ 2 _ —

2 unit area: S = H_o (E X B) = for monochromatic plane wave: (|S|) = ECEOEO = c(ugy) = Iyvg
S I

Density of momentum: P= & (EXB) = 2 = for monochromatic plane wave: (|p[) = ZgoEg = §<|S|> =—
with ¢ = =~ 3 x 108 m/s
VHo€o
's] = \WY massxvelocity
| m? m2 m2 S m3 volume
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Notes:

1) The radiation pressure of sunlight on a mirror on Earth is of the order of

107 bar (P =2 6 x107°Pa) (i.e, 10~ lower than atmospheric pressure).

The total force of sunlight on the entire Earth is F,,; = mR?P = 7 X 108 N = 70’000 tons

eiquinuad

eiqUN

eIqWINUad

2) The forces generated by radiation pressure are usually small.
However, they play a crucial role in certain contexts, such as astrodynamics.
For example:

— if the effects of solar radiation pressure on the spacecraft of the

Viking program had been ignored, the spacecraft would have missed

the orbit of Mars by about 15,000 km.

—The Japan Aerospace Exploration Agency"” ("JAXA") has successfully
deployed a ‘solar sail’ in space which has already successfully propelled its
payload with the IKAROS project.
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Some solved problems
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2T T#Y Determining E and B in EM waves. Assume a 60.0-Hz EM
wave is a sinusoidal wave propagating in the z direction with E pointing in the
x direction, and E, = 2.00V/m. Write vector expressions for E and B as
functions of position and time.

APPROACH We find A from Af = v = ¢. Then we use Fig. 9 and Eqgs. 7 and 8
for the mathematical form of traveling electric and magnetic fields of an EM

wave.
SOLUTION The wavelength is
. * :
p= €= 200 X10m/s 5 oo,
f 60.0s7"
From Eq. 8 we have
2 2 :
k= = — T~ 126X 10°m"
A 5.00 x 10°m
w = 2af = 2w(60.0Hz) = 377rad/s.
From Eq. 11 with » = ¢, we find that
E .
g, = Lo - _20V/m _ o 10°T.

c 3.00 % 10°m/s

The direction of propagation is that of E X B, as in Fig. 9. With E pointing
in the x direction, and the wave propagating in the z direction, B must point in
the y direction. Using Egs. 7 we find:

E = i(2.00V/m)sin|[(1.26 X 10°m™)z — (377rad/s)t]

— -
=

B = j(6.67 x 1077 T)sin|[(1.26 X 10°°m™")z — (377rad/s)t]
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2T ITEEN Wavelengths of EM waves. Calculate the wavelength (a) of a
60-Hz EM wave, (b) of a 93.3-MHz FM radio wave, and (c) of a beam of visible
red light from a laser at frequency 4.74 x 10" Hz.

APPROACH All of these waves are electromagnetic waves, so their speed 1s
¢ = 3.00 x 10°m/s. We solve for A in Eq. 14: A = ¢/f.

3.00 x 108
SOLUTION (a) A = — = m/S _ 50 % 10°m,
f 605!

or 5000 km. 60 Hz is the frequency of ac current in the United States, and, as we
see here, one wavelength stretches all the way across the continental USA.

. X

(b)A = 3.00 lDHﬁm,"lS — 1m
93.3 X 10°s™

The length of an FM antenna 1s about half this (% A),or 1 % m.
. 4

r = 20 0'm/S _ ¢33 % 107m (=633 nm).

4.74 x 10%s7!

IRCVTY ESTIMATE

Cell phone antenna. The antenna of a cell phone

is often ; wavelength long. A particular cell phone has an 8.5-cm-long straight rod
for its antenna. Estimate the operating frequency of this phone.

APPROACH The basic equation relating wave speed, wavelength, and frequency
is ¢ = Af; the wavelength A equals four times the antenna’s length.

SOLUTION The antenna is i.& long, so A = 4(85cm) = 34cm = 0.34 m. Then
f=c/A=(3.0x10°m/s)/(0.34m) = 8.8 X 10° Hz = 880 MHz.

NOTE Radio antennas are not always straight conductors. The conductor may be
a round loop to save space. See Fig. 21b.
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I2TYTITIEY ESTIMATE | Phone call time lag. You make a telephone call

from New York to a friend in London. Estimate how long it will take the elec-
trical signal generated by your voice to reach London, assuming the signal is (a)
carried on a telephone cable under the Atlantic Ocean, and (b) sent via satellite
36,000 km above the ocean. Would this cause a noticeable delay in either case?

APPROACH The signal is carried on a telephone wire or in the air via satellite. In
either case it is an electromagnetic wave. Electronics as well as the wire or cable slow
things down, but as a rough estimate we take the speed to be ¢ = 3.0 X 10°m/s.
SOLUTION The distance from New York to London is about 5000 km.

(a) The time delay via the cable is t = d/c ~ (5 X 10°m)/(3.0 X 10°m/s) = 0.017s.
(b) Via satellite the time would be longer because communications satellites,
which are wusually geosynchronous, move at a height of 36,000 km. The
signal would have to go up to the satellite and back down, or about
72,000 km. The actual distance the signal would travel would be a little
more than this as the signal would go up and down on a diagonal. Thus
t =dfc~72x10"m/(3 X 10°m/s) = 0.24s.

NOTE When the signal travels via the underwater cable, there is only a hint of a delay
and conversations are fairly normal. When the signal is sent via satellite, the delay is
noticeable. The length of time between the end of when you speak and your friend
receives it and replies, and then you hear the reply, is about a half second beyond
the normal time in a conversation. This is enough to be noticeable, and you have to
adjust for it so you don’t start talking again while your friend’s reply is on the way
back to you.
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IETYLIT E and B from the Sun. Radiation from the Sun reaches the
Earth (above the atmosphere) at a rate of about 1350J/s-m? (= 1350 W/m?).
Assume that this is a single EM wave, and calculate the maximum values of E
and B.

APPROACH We solve Eq. 19a (3 = %EHCE%) for E, in terms of S using
S = 1350J)/s-m>.

SOLUTION E, = ./ 25 _ \/ 2(13501/s-m’)
" Nee V(885 x 1072C%/N-m?)(3.00 X 10°m/s)

= 1.01 X 10°V/m.
From Eq. 11, B = E/¢, so

E 1.01 X 10°V
By, = — = /M 337 % 10T,
c 3.00 X 10°m/s
NOTE Although B has a small numerical value compared to E (because of the
way the different units for £ and B are defined), B contributes the same energy

to the wave as E does, as we saw earlier (Egs. 15 and 16).
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ESTIMATE | Solar pressure. Radiation from the Sun that
reaches the Earth’s surface (after passing through the atmosphere) transports
energy at a rate of about 1000 W/m? Estimate the pressure and force exerted by
the Sun on your outstretched hand.

APPROACH The radiation 1s partially reflected and partially absorbed, so let us
estimate simply P = S/c.

S 1000W/m™ - 1076 N/

c 3 X 10°m/s

An estimate of the area of your outstretched hand might be about 10cm by
20cm,so A = 0.02 m?. Then the force is

F = PA = (3 X10°N/m?)(0.02m?) ~ 6 X 10°°N.
NOTE These numbers are tiny. The force of gravity on your hand, for comparison,

is maybe a half pound, or with m = 0.2kg, mg ~ (0.2kg)(9.8 m/s*) ~ 2N. The
radiation pressure on your hand is imperceptible compared to gravity.

SOLUTION P

a
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21U ESTIMATE | A solar sail. Proposals have been made to use the
radiation pressure from the Sun to help propel spacecraft around the solar
system. (a) About how much force would be applied on a 1km X 1km highly
reflective sail, and (b) by how much would this increase the speed of a 5000-kg
spacecraft in one year? (c¢) If the spacecraft started from rest, about how far
would it travel in a year?

APPROACH Pressure P is force per unit area, so F = PA. We use the estimate
of Example 7, doubling it for a reflecting surface P = 25/c. We find the acceler-
ation from Newton’s second law, and assume it is constant, and then find the
speed from v = v, + at. The distance traveled is given by x = }ar’

SOLUTION (@) Doubling the result of Example 7, the solar pressure is 2S5/c =
6 X 10"°N/m” Then the forceis F = PA = (6 X 107°N/m?)(10°m?) ~ 6N.
(b) The acceleration is a = F/m =~ (6N)/(5000kg) =~ 1.2 X 10°m/s’. The speed
increase is v — vy, = at = (1.2 X 107> m/s?)(365 days)(24 hr/day)(3600s/hr) =
4 x 10*m/s (= 150,000 km/h!). (c) Starting from rest, this acceleration would
result in a distance of about %atz ~ 6 X 10" m in a year, about four times the
Sun-Earth distance. The starting point should be far from the Earth so the
Earth’s gravitational force is small compared to 6 N,

NOTE A large sail providing a small force over a long time can result in a lot of
motion.
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v Light Bulb Fields

A light bulb emits 5.00 W of power as visible light. What are the average electric and magnetic fields from the light at a
distance of 3.0 m?

Strategy

Assume the bulb’s power output P is distributed uniformly over a sphere of radius 3.0 m to calculate the intensity, and from it,
the electric field.

Solution

The power radiated as visible light is then %

__P :%Eg fp——r=30m—+]
4

- 2 )
_ [fo_P _ _ 5.00 W _
Fo=4/2 dmricey \/ 2 47(3.0 m)*(3.00%10° m/s)(8.85 x10 2C?/N-m?) 5.TTN/C,

By=FEp/c=192x10°T.
Significance

The intensity I falls off as the distance squared if the radiation is dispersed uniformly in all directions.
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v/ Radio Range

A 60-kW radio transmitter on Earth sends its signal to a satellite 100 km away (Figure ). At what distance in the same
direction would the signal have the same maximum field strength if the transmitter’s output power were increased to 90 kW?

The area over which the power in a particular direction is dispersed increases as distance squared, as illustrated in Figure
16.4.3 Change the power output P by a factor of (90 kW/60 kW) and change the area by the same factor to keep

2
I= % = Mz L the same. Then use the proportion of area A in the diagram to distance squared to find the distance that

produces the calculated change in area.

Solution

Using the proportionality of the areas to the squares of the distances, and solving, we obtain from the diagram

r, Ay 9OW

2 A 60W’

90
=4/ —(100 km
™ =1/5o )
=122 km.
RadioA/
Significance source

The range of a radio signal is the maximum distance between the transmitter and receiver that allows for normal operation. In
the absence of complications such as reflections from obstacles, the intensity follows an inverse square law, and doubling the
range would require multiplying the power by four.
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Example 34.2 Fields on the Page

Estimate the maximum magnitudes of the electric and
magnetic fields of the light that is incident on this page
because of the visible light coming from your desk lamp.
Treat the bulb as a point source of electromagnetic radia-
tion that is 5% efficient at transforming energy coming
in by electrical transmission to energy leaving by visible
light.

Solution Recall from Equation 17.7 that the wave intensity
I a distance r from a point source is I = %, /4 mr?, where P,
is the average power output of the source and 4mr? is the
area of a sphere of radius r centered on the source. Because

the intensity of an electromagnetic wave is also given by

Equation 34.21, we have

"2
1 - O-‘})il\' = “max
47> 2

We must now make some assumptions about numbers to
enter in this equation. If we have a 60-W lightbulb, its
output at 5% efficiency is approximately 3.0 W by visible
light. (The remaining energy transfers out of the bulb by
conduction and invisible radiation.) A reasonable distance
from the bulb to the page might be 0.30 m. Thus, we have

EIIIELK -

IJ.:{]‘: .9)111’

Qrr?

_ \/ (47 X 1077 T-m/A)(3.00 X 10° m/s) (3.0 W)
27r(0.30 m)?

= 45V/m

From Equation 34.14,

E. 45V/m
B =0 _ = 15xX1077°T
max c 3.00 X 108 m/s

This value is two orders of magnitude smaller than the
Earth’s magnetic field, which, unlike the magnetic field in
the light wave from your desk lamp, is not oscillating.
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Example 34.5 Solar Energy

As noted in the preceding example, the Sun delivers about
10° W/m? of energy to the Earth’s surface via electromag-
netic radiation.

(A) Calculate the total power that is incident on a roof of
dimensions 8.00 m x 20.0 m.

Solution We assume that the average magnitude of the
Poyniing vector for solar radiation at the surface of the
Earth is S,, = 1000 W/m?; this represents the power per
unit area, or the light intensity. Assuming that the radiation
is incident normal to the roof, we obtain

P = SavA = (1000 W/m?)(8.00 X 20.0 m?)

= 1.60 X 10°W

(B) Determine the radiation pressure and the radiation
force exerted on the roof, assuming that the roof covering is
a perfect absorber.

Solution Using Equation 34.25 with §,, = 1 000 W/ m?, we
find that the radiation pressure is

S.. 1 000 W/m?
p, = 22 — “;m — 333 X 107 N/m?
¢ 3.00 X 10°m/s

Because pressure equals force per unit area, this corre-
sponds to a radiation force of

F= P, A= (333 X 107°N/m?) (160 m?)

= 533 X 10°4N

What H? Suppose the energy striking the roof could be
captured and used to operate electrical devices in the house.
Could the home operate completely from this energy?

Answer The power in part (A) is large compared to the
power requirements of a typical home. If this power were
maintained for 24 hours per day and the energy could be
absorbed and made available to electrical devices, it would
provide more than enough energy for the average home.
However, solar energy is not easily harnessed, and the
prospects for large-scale conversion are not as bright as
may appear from this calculation. For example, the effi-
ciency of conversion from solar energy is typically 10% for

photovoliaic cells, reducing the available power in part (A)
by an order of magnitude. Other considerations reduce the
power even further. Depending on location, the radiation
will most likely not be incident normal to the roof and, even
if it is (in locations near the Equator), this situation exists
for only a short time near the middle of the day. No energy
is available for about half of each day during the nighttime
hours. Furthermore, cloudy days reduce the available
energy. Finally, while energy is arriving at a large rate during
the middle of the day, some of it must be stored for later
use, requiring batteries or other storage devices. The result
of these considerations is that complete solar operation of
homes is not presenily cost-effective for most homes.
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